

Rapid and Readily Available Potassium

Need for Potassium:

- Activator of numerous plant growth enzymes, directly impacting protein, starch, and ATP synthesis
- · Adjustment of pH within plant cells
- Regulation of water pressure in plant cells
- Enhance carbon dioxide fixation during photosynthesis

<u>Potassium Deficiency Symptoms</u> Symptoms show as firing of the leaf margins (edges).

Moisture -

Features and Benefits of K GRO:

Synergistic dual mode-of-action for stress protection

 Potassium and Yield Burst components work together to activate and enhance the plants natural defense mechanisms against abiotic stress

Plant stressors are a common occurrence,
 K GRO ensures your crop is prepared

Frost

Use Rates

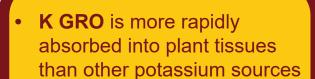
Soil Applied / 2x2 / Y-Drop

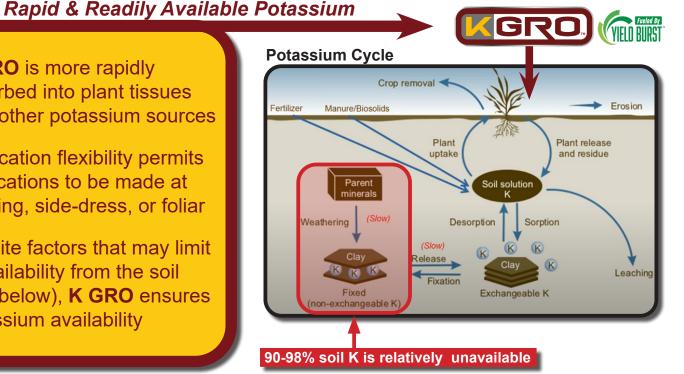
1-12 qts/Acre

In-Furrow

1-2 qts/Acre

Foliar


1-4 qts/Acre


Understanding Potassium Tendencies

Soil processes negatively influence potassium availability to the plant. K GRO is an excellent solution to minimize these yield limiting challenges.

At Planting, Side-Dress, Foliar

- Application flexibility permits applications to be made at planting, side-dress, or foliar
- Despite factors that may limit K availability from the soil (see below), K GRO ensures potassium availability

What factors influence potassium availability?

Less Plant Available K More Plant Available K Key Factors

K Base Saturation	< 2%	2-4%		4-8%
K ppm	< 80 ppm	80-160 ppm		> 160 ppm
Soil pH	pH Decreases Higher Acidity - Increased Al** & H* ions on CEC		pH Increases Less Acidity - Less Al** and H* ions on CEC	
Soil Moisture	Lower Soil Moisture Levels		Higher Soil Moisture Levels	
Clay Type	2:1 or 1:1 Non-Expanding Clays Illite, Kaolinite, etc.		2:1 Expanding Clays Smectite, Vermiculite, etc.	

This information is summarized from reports and studies conducted by University of MN. Iowa State University, Michigan State University, North Dakota State University, Purdue University, Becks Hybrids, AgPHD